Skip to main content

Scientists discover new pathway that prevents bowel cancer treatment from working

Leading scientists at BHP founder-member the University of Birmingham have discovered a previously unknown pathway that prevents specific drugs from working in patients with bowel cancer.

The research findings pave the way for increasing the number of bowel cancer patients who can be successfully treated, say the scientists.

Bowel cancer, also called colorectal cancer, affects the large bowel, which is made up of the colon and rectum. It is the fourth most common cancer in the UK, with over 42,000 people diagnosed with bowel cancer every year in the UK. It is also the second biggest cancer killer, with 16,000 people with bowel cancer dying in the UK every year.

The University of Birmingham-led research involved the study of 184 tumour samples and medical records of bowel cancer patients participating in the COIN trial, as well as research carried out in mice, cell cultures, and a laboratory model for pre-malignant colorectal cancer.

Co-senior author Andrew Beggs, Professor of Cancer Genetics & Surgery at the University of Birmingham, explained: “About 60% of bowel cancers are sensitive to drugs called anti-EGFR inhibitors which work by blocking a key pathway in these cancers.

“However, despite this, in cancers that should be sensitive to them, these drugs only work in patients about 50% of the time.”

Co-senior author Dr Fedor Berditchevski, also of the University of Birmingham, added: “Scientists have previously found that if bowel cancer patients have a mutation in a gene called RAS, the anti-EGFR inhibitors will not work.

“However, our research has now discovered a new pathway involving a tetraspanin protein called TSPAN6 that is frequently inactive in bowel cancer patients and this makes these drugs less effective. Crucially, our research also shows that if this pathway is active in a patient’s cancer then the drug will work, irrespective of whether they have a mutation in RAS or not.”

First author Dr Regina Andrijes, a Postdoctoral Fellow at the University of Birmingham, concludes: “This is the first time a tetraspanin protein has been shown to be directly involved with bowel cancer. Our research findings show that this new pathway could act as a biomarker for treatment with anti-EGFR drugs in bowel cancer, increasing a patient’s chance of survival and the number of patients who could benefit from these drugs who previously would not have.”

The researchers are now set to undertake a clinical trial of using this marker to better identify patients for anti-EGFR treatment.

The study, published in the Proceedings of the National Academy of Sciences (PNAS), was carried out in collaboration with fellow BHP member University Hospitals Birmingham NHS Foundation Trust, working with Semmelweis University in Hungary, and Assiut University in Egypt.

World-first trial to assess ‘life-extending’ cannabis-based drug for thousands with aggressive brain tumours

BHP founder member the University of Birmingham will co-ordinate a major UK trial to analyse the efficacy of cannabis-based drug Sativex in treating the most aggressive form of brain tumours.

The new phase II trial, to be funded by The Brain Tumour Charity, is to launch at 15 NHS hospitals and follows promising results from a phase I study in 27 patients. The phase II trial will assess whether adding Sativex (an oral spray containing cannabinoids THC and CBD) to chemotherapy could extend life for thousands diagnosed with a recurrent glioblastoma, which currently has an average survival of less than 10 months*.

In a phase I trial in glioblastomas earlier this year**, the drug — already used in treating multiple sclerosis — was found to be tolerable in combination with chemotherapy, with the potential to extend survival.

While the phase I study observed that more patients were alive after one year in the Sativex arm compared to the placebo arm, the study was not sufficiently powered to show survival impact.

The new three-year phase II trial (called ARISTOCRAT), led by Professor Susan Short at the University of Leeds and co-ordinated by the Cancer Research UK Clinical Trials Unit at the University of Birmingham, is due to begin recruiting over 230 patients across all UK nations in early 2022, subject to sufficient funds being raised.

Having seen its income drop by over 25% last year due to the pandemic and been forced to pause its regular research grant funding programme, The Brain Tumour Charity has today launched an appeal to raise the £450,000 needed to open the trial as soon as possible.

Experts hope that, should the trial prove successful, Sativex could represent one of the first additions to NHS treatment for glioblastoma patients since temozolomide chemotherapy in 2007.

Glioblastomas are the most common and most aggressive form of brain cancer, with around 2,200 people diagnosed each year in England alone***. They are usually fast-growing and diffuse, with poorly-defined boundaries and thread-like tendrils that extend into other parts of the brain.

Almost all glioblastomas recur even after intensive treatment including surgery, radiotherapy and chemotherapy, and average survival is just 12-18 months from first diagnosis****.

Over the last decade, there has been significant global interest within both patient and scientific communities about the activity of cannabinoids in brain tumours, with the view that cannabinoid-based products may not only help relieve symptoms but could also have a positive impact on survival.

Several pre-clinical laboratory studies***** have suggested that cannabinoids THC and CBD may reduce brain tumour cell growth and could disrupt the blood supply to tumours – however, to date, clinical evidence that they could treat brain tumours has been limited.

In this new phase II trial, researchers will assess whether adding Sativex to the current standard chemotherapy treatment (temozolomide) could offer extra time to live for adults diagnosed with a recurrence of their glioblastoma after initial treatment.

The trial plans to recruit 232 participants across a minimum of 15 hospitals******: two thirds of the participants will be given temozolomide plus Sativex, while one third will be given temozolomide plus placebo*******.

Sativex, manufactured by GW Pharma, is an oromucosal spray containing 1:1 THC (Delta-9-tetrahydrocannabinol) and CBD (cannabidiol), with the active ingredients being absorbed in the lining of the mouth, either under the tongue or inside the cheek.

Participants will be asked to administer up to 12 sprays per day (or to the maximum dose they can tolerate if fewer than 12) of Sativex or placebo oral sprays. Participants will then undergo regular follow-up including clinical assessment (every four weeks), blood tests, MRI scans (every eight weeks), and they will complete quality of life questionnaires. This will also be one of the first trials to integrate with The Brain Tumour Charity’s app BRIAN.

The trial will measure whether adding Sativex to chemotherapy extends the overall length of patients’ lives (overall survival), delays the progression of their disease (progression-free survival) or improves quality of life.

Professor Pam Kearns, Director of the Cancer Research UK Clinical Trials Unit (CRCTU) at the University of Birmingham, which is co-ordinating the trial, said: “Our mission at the CRCTU is to translate cutting-edge science and research into improved patient care by identifying novel therapies that will save lives. It is vital that trials like this, investigating the role cannabis or the chemicals in it can play treat cancer, are carried out.”

Principal Investigator, Professor Susan Short, Professor of Clinical Oncology and Neuro-Oncology at the University of Leeds, said: “The treatment of glioblastomas remains extremely challenging. Even with surgery, radiotherapy and chemotherapy, nearly all of these brain tumours re-grow within a year, and unfortunately there are very few options for patients once this occurs.

“Cannabinoids have well-described effects in the brain and there has been a lot of interest in their use across different cancers for a long time now. Glioblastoma brain tumours have been shown to have receptors to cannabinoids on their cell surfaces, and laboratory studies on glioblastoma cells have shown these drugs may slow tumour growth and work particularly well when used with temozolomide.

“It’s really exciting that we’re now at the point where we can run a definitive, well-designed study that will tell us the answer to whether these agents could help treat the most aggressive form of brain tumour. Having recently shown that a specific cannabinoid combination given by oral spray could be safely added to temozolomide chemotherapy, we’re really excited to build on these findings to assess whether this drug could help glioblastoma patients live longer in a major randomised trial.”

Dr David Jenkinson, Interim CEO at The Brain Tumour Charity, which is funding the trial, said: “We hope this trial could pave the way for a long-awaited new lifeline that could help offer glioblastoma patients precious extra months to live and make memories with their loved ones.

“With so few treatments available and average survival still so heartbreakingly short, thousands affected by a glioblastoma in the UK each year are in urgent need of new options and new hope.

“We know there is significant interest among our community about the potential activity of cannabinoids in treating glioblastomas, and we’re really excited that this world-first trial here in the UK could help accelerate these answers. The recent early-stage findings were really promising and we now look forward to understanding whether adding Sativex to chemotherapy could help offer life-extension and improved quality of life, which would be a major step forward in our ability to treat this devastating disease.

“But we also know that for many, this trial won’t come soon enough. In the meantime, while other cannabis-based products may help alleviate symptoms, there is insufficient evidence to recommend their use to help treat brain tumours. For anyone considering using cannabis-based products or other complementary therapies, it’s vital that you discuss these with your medical team first, as they could interact with other treatments such as anti-epileptic medicines or steroids.”

Stephen Lee, 62 from Leyland in Lancashire, took part in the phase I trial of Sativex in 2015 after his glioblastoma returned following initial treatment. Stephen was first diagnosed in 2010, just a few months after he had very sadly lost his older brother to the same disease. Stephen said: “My diagnosis was very sudden and was one of those days you never forget. Having had to leave work early with a severe headache and a stabbing pain in my right eye, my wife insisted that we go straight to hospital after what my brother had experienced.

“I was admitted that same day, had a scan and that’s when they identified it was a brain tumour. I had the operation the following week, and beforehand my wife and I agreed that we wanted to stay positive, to keep living our lives and to enjoy however much time we had together.

“I joined the early trial of Sativex in the hope that it could improve my quality of life, but I also thought it was important to do so as the chemotherapy and radiotherapy I was having had all been trialled by other people before it could be used safely. I thought it only right and proper that I followed in their footsteps and joined a trial to help prove a new drug which could benefit so many people in the future with a recurring glioblastoma.

“I took the oral spray 10 times a day, and it was easy as I could take it wherever we were going, even while out for dinner. While I don’t know whether I had Sativex or the placebo, since the trial finished in 2016, all my MRI scans have been clear.

“This new trial is so important as it will give people hope that there could be life beyond a glioblastoma diagnosis and that there are other treatments being trialled to support them to live their lives.”
Anyone affected by a glioblastoma can speak to The Brain Tumour Charity on 0808 800 0004.

References:

*Twelves et al. A phase 1b randomised, placebo-controlled trial of nabiximols cannabinoid oromucosal spray with temozolomide in patients with recurrent glioblastoma. Br J Cancer 124, 1379–1387 (2021).

**The initial phase 1b trial, led by the same authors, was published in the British Journal of Cancer in February 2021. The study assessed the safety and potential effectiveness of adding Sativex to temozolomide for patients with a newly recurrent glioblastoma (GBM) – finding it could be tolerated, did not appear to interfere with temozolomide treatment and had the potential to improve survival. In the first part of the study, 6 patients received a personalised regime of Sativex of up to 12 sprays per day, alongside their temozolomide therapy – and the side-effects were recorded and reviewed. In the second part of the study, 21 patients were randomised to receive either Sativex with temozolomide (12 patients) or placebo with temozolomide (9 patients) for a total duration of 12 months. 10 out of 12 (83.3%) patients receiving Sativex were still alive after one year, compared to 4 out of 9 (44.4%) patients in the placebo arm.

***Greenberg et al. Incidence and outcomes for cerebral glioblastoma in England, Public Health England; Brodbelt, A., Greenberg, D., Winters, T., Williams, M., Vernon, S. and Collins, V.P. Glioblastoma in England: 2007–2011. Eur. J. Cancer 2015, 51, 533–542.

****The prior figure (‘less than 10 months’) is the average survival from the point of tumour recurrence following initial treatment, whereas the ‘12-18 months’ figure is the average survival from first diagnosis.

****Rocha et al. Systematic review of the literature on clinical and experimental trials on the antitumor effects of cannabinoids in gliomas. J Neurooncol, 2014. 116(1): p. 11-24; Dumitru, C.A., I.E. Sandalcioglu, and M. Karsak, Cannabinoids in Glioblastoma Therapy: New Applications for Old Drugs. Front Mol Neurosci, 2018. 11: p. 159; Torres, S., et al., A combined preclinical therapy of cannabinoids and temozolomide against glioma. Mol Cancer Ther, 2011. 10(1): p. 90-103.

******The recruiting centres include: Leeds General Infirmary; Guy’s and St Thomas’, London; Queen Elizabeth Hospital, Birmingham; Addenbrooke’s Hospital, Cambridge; Western General Hospital, Edinburgh; The Beatson, Glasgow; The Clatterbridge Cancer Centre, Liverpool; The Christie, Manchester; Queen’s Medical Centre, Nottingham; John Radcliffe Hospital, Oxford; Southampton General Hospital; Southmead Hospital, Bristol; Charing Cross Hospital, London; Velindre Cancer Centre, Cardiff, and the Royal Victoria Hospital, Belfast.

*******Both Sativex and the placebo are being provided free-of-charge for the duration of the trial by GW Pharma.

UHB and Cambridge University Hospitals win government funding for ground-breaking AI in radiotherapy

A machine learning technology that helps cut the time patients wait for life-saving cancer treatment has been successful in the latest round of the Artificial Intelligence (AI) in Health and Care Award.

BHP founder member University Hospitals Birmingham, working in partnership with Addenbrooke’s Hospital, part of Cambridge University Hospitals (CUH) is one of 38 organisations singled out for funding.

The AI Award is making £140 million available over four years to accelerate the testing and evaluation of artificial intelligence technologies which meet the aims set out in the NHS Long Term Plan.

Over the next year, UHB will work with CUH to leverage Microsoft Project InnerEye’s open-source AI toolkit to differentiate tumour and healthy tissue on cancer scans (called ‘segmenting’), prior to radiotherapy treatment. The aim of this AI Award project is to evaluate how this could save clinicians’ time, reduce the time between the scan and commencing treatment, and scale this to four NHS Trusts.

Dr Kal Natarajan, UHB consultant clinical scientist, said: “I’m really looking forward to working with colleagues in Birmingham and Cambridge on this project.

“The technology has tremendous potential to transform radiotherapy care, helping patients to be treated quicker and ensure clinicians spend their time as effectively as possible.”

Dr Raj Jena, CUH oncologist and project lead, said: “I am so pleased that our project has been awarded government funding to take it to the next level. AI has the capacity to deliver so much behind-the-scenes routine work, enabling doctors to spend more time face-to-face with patients, and shortening the time that patients have to wait for treatment.

“We believe this is first time an NHS hospital has trained its own medical imaging AI for its own patients and our aim is to assist other radiotherapy departments to use the models for their patients.”

Up to half of the UK population will be diagnosed with cancer at some point in their lives. Of those, half will be treated with radiotherapy, often in combination with other treatments such as surgery, chemotherapy, and increasingly immunotherapy.

Radiotherapy involves focusing high-intensity radiation beams to damage the DNA of hard cancerous tumours while avoiding surrounding healthy organs. This is a critical tool in the fight against cancer, with around 40% of cured patients undergoing precision radiotherapy.

Radiotherapy is most effective when treatment takes place as soon as possible. However, segmenting the tumour targets and healthy tissue on image scans is a key step that is currently performed manually by doctors, taking several hours per patient.

Microsoft’s recent peer-reviewed research paper in JAMA Network Open shows that clinicians could segment prostate and head & neck cancer images up to 13 times faster when using InnerEye machine learning assistance, with an accuracy similar to that of human experts.

Javier Alvarez-Valle, from Microsoft Research Cambridge, said: “We are delighted that CUH and UHB are able to use our open-source software to build their own AI models, for the benefit of their patients. This NHSX AI Award paves the way for more NHS Trusts to reduce cancer treatment times using assistive AI, and to help alleviate the workload of clinicians.”

Already, over 17,000 stroke patients and over 25,000 patients with diabetes or high blood pressure have benefited from the first round of the AI in Health and Care Award since September, where £50 million was given to 42 AI technologies.

The AI Award is one of the programmes that make up the NHS AI Lab, led by NHSX and delivered in partnership with the Accelerated Access Collaborative (AAC) and National Institute for Health Research (NIHR).

Urine test for bladder cancer to be developed by University of Birmingham and Nonacus

BHP founder-member the University of Birmingham and Nonacus, a provider of genetic testing products for precision medicine and liquid biopsy, have partnered to develop a non-invasive test for bladder cancer. The test, which is expected to be available by mid-2022, will use highly sensitive liquid biopsy technology developed by Nonacus, and a panel of biomarkers validated by Dr Rik Bryan and Dr Douglas Ward from the University’s Bladder Cancer Research Centre, to diagnose the disease from urine samples.

Bladder cancer is the seventh most common cancer in the developed world1. In the UK, over 100,000 people a year are referred to hospital clinics that investigate for bladder cancer, usually after passing blood in their urine (haematuria).  The first stage of investigation is usually cystoscopy, which involves inserting a camera into the bladder.   Of these 100,000 patients, around 12% are subsequently diagnosed with bladder cancer, normally after a second invasive procedure to extract a biopsy.

Dr Bryan, Director of the Bladder Cancer Research Centre,  commented: “While blood visible in the urine should always be investigated, over 80% of people who have a cystoscopy at a haematuria clinic are diagnosed with non-malignant conditions or have no abnormality.  Unfortunately, the remaining 20% will need a further invasive procedure to confirm diagnosis.  What is required is a highly sensitive and specific, non-invasive test that can rapidly determine those who need a biopsy and those who do not, and a urine test is the obvious place to start.”

While the ‘liquid biopsy’ approach is attractive, the low levels of tumour DNA in a background of DNA from normal tissues requires highly sensitive analytical techniques to obtain accurate results.  However, researchers at the University started their work in the knowledge that Nonacus had successfully pioneered commercial non-invasive prenatal tests to identify low-levels of fetal DNA in maternal blood samples.  Moreover, the company was developing methods to allow confident and sensitive calling of mutations from as little as 10ng of DNA.

The researchers used ‘deep sequencing’ of tumour DNA to identify mutations that are present in the majority of urothelial bladder cancers (UBCs).  Their work, which was funded by Cancer Research UK and an MRC Confidence in Concept grant, involved sequencing 23 genes from tumour samples collected from 956 newly diagnosed, treatment-naïve patients.  This deep sequencing of genes identified 451 unique mutations that were present in over 96% of tumours.  The researchers also demonstrated that these mutations were identifiable in urine samples collected at the same time as tumour sampling2.

As the researchers have shown, mutated DNA in a urine sample can be extracted from cancer cells shed into the urine from the lining of the urinary tract, or can be found as cell-free DNA fragments. However, extracting DNA from the cancer cells provides more reliable amounts of DNA for the test, especially when only small volumes of urine may be available. Coupling the mutation panel with the unique molecular identifiers and the proprietary target capture technology provided by the Nonacus Cell3 Target™ will provide a much more sensitive test than the existing PCR-based approach. The researchers are already working on validating this combination in a further 600 cases (including non-cancer cases) and they expect to publish data on sensitivity and specificity within six months.

Nonacus intends to launch the new bladder cancer test within 12 months, and the final product will include access to bioinformatics software to help with analysis.  The company expects the test will provide high sensitivity for all stages and grades of disease, and will ensure the test is available worldwide to laboratories, hospitals and clinics.

Promisingly, the original research also determined the influence of the mutations on cancer progression, time to recurrence, and overall and disease-specific survival in patients with non-muscle-invasive bladder cancer (NMIBC), and disease-specific survival in patients with muscle-invasive bladder cancer (MIBC), raising the possibility that the test could be used to stratify patients according to risk.

Chris Sale, CEO of Nonacus Ltd, commented:  “We expect this partnership to deliver better care and outcomes for patients by reducing the number of invasive procedures, providing earlier diagnosis and speeding up access to treatment for people with bladder cancer.”

Tony Hickson, Chief Business Officer at Cancer Research UK, said: “As funders of much of the world-class, cutting-edge cancer research happening in the UK, we offer unique opportunities to commercial partners looking for early involvement in new discoveries. Having Nonacus on board to help transform promising findings in the lab into a new non-invasive test to diagnosis bladder cancer is a testament to how commercial collaborations have the potential to transform the lives of patients. We are looking forward to seeing the next steps as the test is developed and rolled out to the UK and beyond.”

Allen Knight, Chair of Trustees, Action Bladder Cancer UK, said:  “This really is very exciting and has the potential to make an incredible difference for patients and for Bladder Cancer treatment. Currently urine tests do not ​accurately pick up bladder cancer, and invasive tests are required to confirm a diagnosis.  A urine test that can rapidly determine who needs these tests will be a very welcome development.  Many patients, myself included, find cystoscopies very uncomfortable at best, and they can have lasting side effects.  This research could pave the way for routine screening, common in other cancers, but unavailable at present for Bladder Cancer.”

Blood cancer trial sponsored by the University of Birmingham opens for recruitment

A new Cancer Research UK-funded clinical trial being sponsored by BHP founder-member the University of Birmingham has opened for recruitment – aiming to investigate the efficacy of a novel treatment for patients affected by a specific type of blood cancer.

PROMise, which is being co-ordinated via the Cure Leukaemia-funded Trials Acceleration Programme (TAP) hub at the University of Birmingham’s Cancer Research UK Clinical Trials Unit (CRCTU), will recruit patients aged over 16 who suffer with myelofibrosis (MF).

Over the next two years, 15 NHS centres will recruit MF patients who will be given a novel agent called PLX2853 in addition to the existing standard treatment of ruxolitinib.

Each year in the UK over 300 patients are diagnosed with MF, which is a blood cancer associated with debilitating symptoms including extreme fatigue, pain, weakness and shortness of breath. Around 10-20% of MF patients go on to develop acute myeloid leukaemia (AML) and consequently, a diagnosis of MF has a huge impact on both length and quality of life, with median survival from the time of diagnosis being just two years for patients with high-risk disease.

The only curative therapy for MF is stem cell transplant; however, this is only suitable for a small minority of younger patients who don’t present with comorbidities (the effect of all other conditions an individual patient might have – physiological or psychological).

The current NHS standard of care for those unsuitable for stem cell transplant is treatment with ruxolitinib, approved for use in 2011 and currently the only therapy approved with an indication for MF.

Professor Pam Kearns, Director of the University of Birmingham’s CRCTU, said: “Whilst ruxolitinib is already in widespread clinical use, many patients do not achieve an adequate response. Significant residual symptoms remain in most patients thus there is a major unmet clinical need and the PROMise trial is addressing an urgent need for improved therapeutic approaches for MF patients.”

Chief Investigator, Professor of Haematology at University of Oxford, Adam Mead, said: “The PROMise study is a really exciting study that has just opened in the UK and will be opening across 15 centres. This is introducing a new treatment called PLX2853, in combination with ruxolitinib, for patients with MF. The impact on patients for this combination of treatments, I hope, will be improvement of their symptoms, improvement of their quality of life, without causing them side effects.”

Young patients with cancer to benefit from £1million investment in genomic testing

Children and young people living with cancer from across the West Midlands, Oxfordshire and parts of Southern England will now benefit from improved genetic testing, thanks to a seven-figure donation to Birmingham Children’s Hospital Charity from Children with Cancer UK, in partnership with Kwik-Fit.

Home to one of the largest children’s cancer centres in the UK, BHP member Birmingham Children’s Hospital cares for over 200 patients with cancer, leukaemia and brain tumours every year, from the West Midlands and beyond.

Genomic testing for patients diagnosed with cancer is incredibly important and over the last decade, large scale sequencing projects have identified pertinent DNA changes, which have enabled scientists to develop new and improved cancer drugs and treatments to specifically target these variations.

Sequencing all possible DNA changes in a single test gives scientists the best possible chance of detecting the genetic changes driving a child’s cancer; and knowing the genetic makeup of a child or young person’s cancer, or tumour, allows clinicians to offer a more tailored treatment.

Targeted therapies have improved the number and different types of treatment offered to children and young people, aimed at saving more lives and improving the quality of life for patients living with cancer.

The UK’s largest genetics laboratory, the West Midlands Regional Genetics Laboratory, based at BHP member Birmingham Women’s and Children’s NHS Foundation Trust, provides cancer genetic services for patients across the West Midlands, Oxfordshire and parts of Southern England, covering a population of 12million.

The NovaSeq 6000 is a state-of-the-art piece of DNA sequencing equipment which has enabled the rapid expansion of cancer genetic testing at the West Midlands Regional Genetics Laboratory.
The NovaSeq 6000 is a state-of-the-art piece of DNA sequencing equipment which has enabled the rapid expansion of cancer genetic testing at the West Midlands Regional Genetics Laboratory.

Now a donation of just over £1million to Birmingham Children’s Hospital Charity has allowed the laboratory to purchase a high-throughput next generation sequencing platform.  This investment is possible thanks to the incredible fundraising efforts of Kwik-Fit’s staff, customers and suppliers who raised the substantial sum after Kwik-Fit employees chose Children with Cancer UK as the company’s national charity partner.

The NovaSeq 6000 is a state-of-the-art piece of DNA sequencing equipment which has enabled the rapid expansion of cancer genetic testing at the West Midlands Regional Genetics Laboratory.

Initial forecasts provided by NHS England and NHS Trusts across the West Midlands, Oxfordshire and parts of Southern England suggest that approximately 560 children and young people per year could benefit from large cancer panel genetic testing following the installation of the NovaSeq.

The significant gift also allowed for the refurbishment of the laboratory in which the NovaSeq will sit.

The Chairman of Birmingham Women’s and Children’s NHS Foundation Trust and its Charity, Professor Sir Bruce Keogh, former Medical Director of the NHS in England, said: “The NovaSeq 6000 has dramatically enhanced our ability to identify diagnostic and prognostic biomarkers for childhood and young people’s cancers, thereby enabling our expert scientists and doctors to quickly optimise and develop more effective and less toxic treatments for children and young people with cancer.

“We’re incredibly thankful to Children with Cancer UK and all the employees at Kwik-Fit for enabling us to expand our cancer genetic testing capability in this way. It really will make a difference to thousands of families living with a cancer diagnosis.”

Children with Cancer UK, the charity dedicated to the fight against childhood cancer, is a long-term supporter of Birmingham Children’s Hospital and is making its second £1million donation to the hospital’s charity. The first helped ensure the opening of a brand new Children’s Cancer Centre in 2018.

Children with Cancer UK Trustee, Nick Goulden, said: “We are delighted the new NovaSeq 6000 has been installed at the West Midlands Regional Genetics Laboratory, ready to serve its young cancer patients across the region. By offering personalised treatments through genetic sequencing, it’s another step towards our ultimate goal of saving the life of every child and young person diagnosed with cancer.

“We are also incredibly grateful for our year-long partnership with Kwik-Fit who shared this vision with us. Through their innovative and dedicated fundraising, Kwik-Fit employees raised £1million to make all of this possible and the legacy of our relationship will benefit the lives of thousands of children and young people in the future.“

Kwik-Fit’s partnership with Children with Cancer UK, which took place before the pandemic, saw its staff participate in events such as the Virgin Money London Marathon and the Simplyhealth Great North Run. It also organised various fundraising activities including bake sales, static bike challenges, car washes and sponsored walks. In addition, staff swapped cars for cycles as part of the company’s first-ever ‘Tour De Branch’ – a nationwide bike ride in which over 80 employees covered 2,500 miles between 120 Kwik-Fit centres.

Mark Slade, managing director of Kwik-Fit, said: “We were delighted to hit our fundraising target of £1million which has enabled Birmingham Children’s Hospital Charity to invest in such an important piece of equipment.

“I would like to congratulate and thank all of the Kwik-Fit staff for their tremendous effort and dedication and all our customers and partners who supported us – we would not have been able to achieve this target without them. We hope that this vital testing equipment will make a massive difference to the outcome for many families in the future.”