Skip to main content

New treatment combination may improve outcomes for children with rare cancers

Children who develop neuroblastomas, a rare form of cancer which develops in nerve cells, may benefit from receiving certain anti-tumour drugs as well as chemotherapy, a new trial has found.

The results of the BEACON trial conducted by the Cancer Research UK Clinical Trials Unit (CRCTU) at BHP founder-member the University of Birmingham found that combining anti-angiogenic drugs, which block tumours from forming blood vessels, alongside various chemotherapy drugs led to more young people seeing their tumours shrinking, from 18% in the control group to 26% among those on Bevacizumab.

The findings have been published in the Journal of Clinical Oncology. The trial saw 160 young people aged 1-21, from 43 hospitals in 11 European countries, randomised with half receiving the anti-angiogenic drug called Bevacizumab on top of conventional therapy. The group who received Bevacizumab had an increase in the likelihood of responding to treatment, from 18% among those who only had the established therapy to 26% for those with the additional drug. Patients who received Bevacizumab additionally had better one year progression-free survival rates.

The trial constituted one of many collaborations between the University of Birmingham and European expert groups SIOPEN (International Society of Paediatric Oncology European Neuroblastoma) and ITCC (Innovative therapies for children with cancer).

Simon Gates, Professor of Biostatistics and Clinical Trials at the University of Birmingham and senior lead author of the paper said: “These are very exciting results that hopefully get us closer to finding treatments for children who develop neuroblastomas. Currently, the outcomes are really poor for children who get this horrible cancer and so even seemingly small increases in the chance that a patient is going to be able to shrink their tumours is significant.

“We are delighted that the BEACON trial has helped to shape treatment for children with relapsed and refractory neuroblastoma going forward.”

Dr Lucas Moreno, Head of Paediatric Haematology and Oncology at Vall d’Hebron University Hospital, Barcelona, Spain and Chief Investigator for the study said: “BEACON was a hypothesis-generating trial that has served to identify active regimens that are now being further investigated. We are delighted that the data generated has been incorporated into the current UK Clinical Practice Guidelines and Bevacizumab is incorporated into standard treatment for relapsed neuroblastoma.”

Professor Amos Burke appointed Director of Birmingham’s Cancer Research UK Clinical Trials Unit (CRCTU)

Professor Amos Burke has been appointed as the new Director of the Cancer Research UK Clinical Trials Unit, based at BHP founder-member the University of Birmingham.

Professor Burke – a paediatric oncologist and has held a consultant position in the NHS since 2004 – joins the Unit from Cambridge University Hospitals NHS Foundation Trust.  With a particular interest in childhood lymphomas, Professor Burke chaired the UK paediatric Non-Hodgkin Lymphoma subgroup of the National Cancer Research Institute (NCRI) Lymphoma Clinical Studies Group (2010-2018), remaining an active member (2019-2023). Since 2023 he has been the Deputy Chair of the UK Children’s Research Group (currently supported by the Children’s Cancer and Leukaemia Group).

Commenting on his appointment, Amos said: “I am delighted to be joining CRCTU as it approaches its 40th year of CRUK funding as a result of its work under the leadership of the former Directors, most recently Professor Pam Kearns who brought children’s cancer trials into the unit during her tenure. CRCTU is nationally and internationally known for its trials in childhood and adult cancer, addressing unmet clinical needs and leading the use of innovative trial design. I look forward to leading CRCTU going forward as new approaches to increasingly complex trials involving more global collaboration are required.”

As the new Director of the CRCTU, he is responsible for the delivery of clinical cancer trials for children and young people in England. The CRCTU collaborates with clinician investigators driving cutting-edge research, with a focus on treatments that will change outcomes for people with cancer.

Professor Burke is currently the Chief Investigator for the innovative platform trial Glo-BNHL for children with relapsed and refractory mature B-cell Non-Hodgkin Lymphoma.

Rare disease trials to develop playbook for testing new treatments

Patients with rare diseases could benefit from a ‘revolution’ in clinical trials that could see one-stop studies designed to provide robust results even with small numbers of participants.

The CAPTIVATE node is part of the recently introduced UK Rare Disease Research Platform established as part of a £14 million investment over five years by the Medical Research Council (MRC) and the National Institute for Health and Care Research (NIHR).

Led by BHP founder-member the University of Birmingham along with collaborators at the Universities of Sheffield and Liverpool, the CAPTIVATE node will be developing a methodology to run a ‘one-stop-study’, which would encompass all phases of clinical trials to enable the efficient evaluation of treatments for rare diseases.

The CAPTIVATE node will bring together the UK’s leading trial experts with hospital researchers experienced in rare diseases, industry partners, policy makers and patient partners, and the resulting designs could speed up the approval of medicines for use in rare diseases.

Professor Lucinda Billingham at the University of Birmingham is the lead academic for the CAPTIVATE node of the MRC-NIHR UK Rare Disease Research Platform. She explained: “One of the biggest challenges with developing new treatments or improving existing ways of treating rare diseases is that the model of clinical trial that is used as standard is incredibly difficult to run where there may be only hundreds of people around the world at any one time with that disease.

“Added to this fact, in the UK three quarters of rare diseases affect children and more than 30% of children with a rare disease die before their fifth birthday.

“The CAPTIVATE node is looking to scale a revolutionary model of clinical trial that runs all the phases together and can get clinically significant results even with very small numbers of patients. We want to find ways that need as few people to take part as possible, that are quicker and that provide all the information needed for the authorities to approve a new medicine to be prescribed to people with rare diseases from one single trial.”

Bringing together strengths in rare diseases

The MRC-NIHR UK Rare Disease Research Platform is now getting up and running and will bring together UK strengths in rare diseases research to improve diagnosis and treatment through better understanding of the disease.

It is made up of a central coordination and administrative hub and 11 specialist nodes based at universities across the UK, including the CAPTIVATE node at the University of Birmingham.

The aim of the platform is to bring together expertise from across the UK rare disease research system to foster new and innovative treatments for those directly and indirectly impacted by rare conditions.

Professor Lucy Chappell, Chief Executive of the NIHR, commented: “The UK Rare Disease Platform marks a significant advance in accelerating rare disease research, supported through NIHR funding and our partners the Medical Research Council. The platform will enable greater collaboration between patients and those working across academic, clinical and industry research. By bringing the right people and expertise together, we will be able to provide better care more quickly to those living with rare diseases.

“The NIHR continues to lead essential ongoing research into rare diseases, including through our Biomedical Research Centres, and we are making it easier for people with rare diseases to take part in research opportunities via our Be Part of Research Service, which can now be accessed through the NHS app in England. We look forward to working with our partners further to accelerate our understanding and treatment of rare diseases affecting millions of people across the UK.”

Stem cell therapy for heart attack patients trialled at UHB

A stem cell therapy trial at BHP founder-member University Hospitals Birmingham is having a life-changing effect on heart attack patients, with scans showing almost complete restoration of heart muscle function just weeks after the procedure. 

After a heart attack, around 30% of patients are left with severely damaged and weakened hearts which can, over time, lead to life-threatening heart failure, as the heart is unable to pump the blood around the body properly. The trial therapy aims to prevent this heart failure by regenerating the damaged muscle.

Developed by biotechnology company CellProthera, the therapy involves the application of a person’s own stem cells directly into their heart, through the femoral artery in the leg. The patient’s heart activity is then monitored for six months – at 1, 3 and 6 months – using echocardiography and magnetic resonance imaging (MRI).

66 year old Kim Smith is one of four patients recruited to the trial at UHB and was randomly allocated to the experimental arm of the study, meaning that she received the therapy as treatment following her heart attack. Just two weeks after receiving the therapy, Kim’s heart function had returned to almost normal (55%).

Kim said: “I now feel as though I can actually do what I used to do before. When I had the heart attack, I was worried that I was going to end up being stuck at home all day, but since having the stem cell therapy, psychologically and physically, I just feel so much better.

“I’m so grateful to have had this treatment, and I do hope that the research that they are doing goes forward because I think a lot of people would benefit. That was my reason for doing it in the first place – even if it does nothing for me, it could help someone else.”

So far, approximately 50 patients from the UK and France have been recruited to the trial, known as the EXCELLENT (Expanded Cell Endocardial Transplantation) study. The research is currently in its final phase, with results expected later this year.

Dr Sohail Khan, Consultant Interventional Cardiologist and Lead Investigator at UHB for the EXCELLENT study, said: “What we have seen so far is that actually the stem cells do seem to have a dramatic effect in terms of improving heart muscle function.

“Currently, there are few clinical options available that repair and regenerate heart tissue following a heart attack. As a result, the only option for many patients that have suffered a heart attack and developed advanced heart failure, is a fully invasive heart transplant. This is a very serious procedure for the patient, and very costly for society.

“The development of a cell therapy to regenerate cardiac tissue will be transformative for a considerable number of patients globally. A minimally invasive, cell therapy, that uses a patient’s own stem cells, could also considerably reduce treatment costs.”

Matthieu de Kalbermatten, CEO at CellProthera, said: “Bringing the therapy to market as a minimally invasive therapy is vital to tackle, from the root, the harmful effects of heart attacks and improve quality of so many lives.

“The impressive progress of the CellProthera EXCELLENT trial is a testament to the work of our team and our stakeholders. All of the trial sites in the UK and France are committed to admitting and treating the final patients as quickly as possible. In 2024, we will look to start the phase III trial, where we will be recruiting patients from across Europe, with the aim of potential future market authorisation and bringing this vital treatment to all patients.”

NIHR awards £4m to Birmingham Clinical Research Facility to enhance the delivery of research

The Birmingham NIHR Clinical Research Facility (CRF) has been awarded £4 million from the National Institute for Health and Care Research (NIHR).

This funding is part of a total investment of £96 million that has been awarded to NHS organisations across England, to enhance the delivery of research through improving research facilities for patients across the NHS, helping teams to find new ways to prevent and treat diseases.

The Birmingham NIHR CRF is a collaboration between three BHP members – University Hospitals Birmingham NHS Foundation Trust (UHB), Birmingham Women’s and Children’s NHS Foundation Trust (BWC) and the University of Birmingham (UoB).

In Birmingham, new equipment will enable the delivery of innovative health technology services, including a range of cell and gene therapies requiring specialist pharmacy facilities. For example, onsite isolators will support preparation within the research facilities, speeding up the delivery of CAR-T trials for patients with haematology (blood) cancers, as well as trials into cancer vaccines for patients with a variety of solid tumour cancers.

The funding will also provide new laboratory equipment, essential for storing samples from patients recruited to metabolic research studies. This will support researchers with ground breaking work in the prevention, treatment and management of metabolic disease for adults and children across Birmingham.

The bid was led by Jo Gray, NIHR Birmingham Clinical Research Facility Clinical Manager, who said: “This successful bid for equipment and upgrades to our facility is fantastic and will make such a difference to patients and research teams across all partner sites.

“We have ambitious plans in place to upgrade existing equipment, as well as increase our ability to support new research across the sites. New equipment will include a paediatric ‘peapod’, which measures body composition and growth in premature born infants, and biosafety cabinets, which provide an enclosed ventilated space for drug preparation.

“Our portfolio of gastrointestinal (GI) and respiratory studies will also be able to grow with the addition of new endoscopy equipment. One of the key GI trials to benefit will be the INCEPTION clinic for patients with Inflammatory Bowel Disease (IBD). This trial aims to improve diagnosis and prognosis, and make more informed decisions on IBD treatment through biomarker discovery and implementation, by understanding more about how different microbiomes affect gut and oral immune responses.”

Professor Lorraine Harper, NIHR Birmingham Clinical Research Facility Programme Director, added: “We are tremendously proud that our hospitals have been selected for this award from the NIHR to improve the delivery of research in our local population. The award, which builds on existing clinical-academic collaborations facilitated by Birmingham Health Partners, will benefit our adult and paediatric patients, improving their access to new therapies and treatments, which can potentially be life-changing.”

Dr. Jan Idkowiak, NIHR Birmingham Clinical Research Facility Director (BWC), said: “This is very exciting. This award allows us to expand our ability to deliver cutting-edge clinical research beyond the Children’s Hospital, as it will enable us to include pregnant women and their children at the Women’s Hospital. This will be a huge benefit for our patients and will offer great opportunities to develop new therapies.”  

Professor Philip Newsome, Director of the NIHR Birmingham Biomedical Research Centre (BRC), commented: “This is fantastic news for both the CRF and for the organisations that work with them, like the Birmingham BRC. The CRF has been a key partner in delivering many of our experimental research studies, and we collaborate closely on our training, patient and public involvement, and equality, diversity and inclusion programmes too. We are looking forward to continuing working together to deliver patient benefit.”

Birmingham’s world-leading cancer trials unit gets £10m boost

A new £10m grant from Cancer Research UK will ensure that adults and children with cancer continue to benefit from world-class clinical trials led by the University of Birmingham.

The news has been hailed as a ‘major boost for patients’ by both clinicians and cancer survivors.

The Cancer Research UK Clinical Trials Unit (CRCTU) at BHP founder-member the University of Birmingham has already achieved significant progress in the treatment of cancer in the UK and internationally, including establishing new standards of treatment for the rare bone and soft tissue cancer, Ewing Sarcoma.

Scientists at the centre have also transformed the management of some types of prostate cancer and introduced treatment innovations for patients with blood cancers.

The new grant will allow researchers working on more than 100 national and international trials to continue developing safe and effective treatments as well as new tests for cancer over the next five years.

Professor Pamela Kearns, Director of the University of Birmingham-based CRCTU unit and children’s cancer expert, said:

“The renewal of funding for cancer trials in Birmingham is a major boost for our research here and we are delighted to continue working with research teams and patients to find new solutions in cancer care. Our clinical research enables us to translate discoveries from the lab and accelerate the improvement of cancer treatments, giving more patients the best chance of beating their disease.

“As a paediatric oncologist, I am particularly pleased this funding will allow our unique Children’s Cancer Trials Unit at Birmingham to continue to design and run clinical trials to improve the care of children with cancer.

“For example, with support from Cancer Research UK, we are leading International trials for children and young people with difficult to treat cancers like FaR-RMS; a trial testing innovative new treatments for rhabdomyosarcoma and the BEACON 2 trial, testing a range of new combinations of therapies for children and young people with a type of childhood cancer called neuroblastoma, at a stage where they have failed to respond well to standard treatments.”

The Birmingham CRCTU will combine strengths in innovative clinical trial methods with outstanding scientific and clinical expertise nationally and internationally to deliver new clinical trials, across all age groups over the next five years. The CRCTU will work alongside the Birmingham Experimental Cancer Medicine Centre, which is also funded by Cancer Research UK and the National Institute for Health and Care Research on trials to tackle more complex types of cancer and for cancers of unmet need.

Professor David Adams, Head of the College of Medical and Dental Sciences and Pro-Vice-Chancellor at the University of Birmingham said:

“The CRCTU is a jewel in the crown of our research portfolio across the University and I am delighted that with this latest funding we will continue to conduct internationally leading research to find better treatments and tests for cancer.

“Together with the ongoing funding for our Experimental Cancer Medicines Centre, the University is ideally placed to continue advances in cancer research which has a hugely significant role in society today. With unprecedented challenges for our NHS and after the effect that the pandemic has had on waiting lists and access to care, we need more than ever to have quick, effective and safe care for cancer.”

The team coordinates ground-breaking clinical trials across the UK and internationally, as well as regionally through Birmingham Health Partners (BHP) – a strategic alliance between seven higher education and health institutions including the University of Birmingham, University Hospitals Birmingham NHS Foundation Trust and Birmingham Women’s and Children’s NHS Foundation Trust.

Improving outcomes – Francesca’s story

Cancer survivor Francesca Williams was one of 640 patients across Europe to benefit from a trial led by the Birmingham centre that has significantly improved outcomes for children and adults with Ewing Sarcoma.

Diagnosed with a tumour in her rib bone just weeks after her 27th birthday in July 2017, Francesca had 15 sessions of chemotherapy and five weeks of radiotherapy back-to-back over ten months. This was followed by major surgery at Heartlands Hospital in April 2018 to remove the remainder of her tumour and rebuild her chest wall using muscle from her back.

Despite going through medically induced menopause and having no time to store any eggs for fertility treatment, Francesca is expecting her first baby in July.

“I feel so lucky to have been part of the trial,” said Francesca, a 32-year-old English teacher who now lives in Austria.

“The worst thing for me was thinking I wouldn’t be able to have children so to find out I was pregnant last year was incredible. I’m really excited about becoming a mum.”

The European-wide trial EE2012, run by the University of Birmingham’s Cancer Research Clinical Trials Unit, tested the standard chemotherapy treatment plan against a new experimental treatment plan in children and adult patients from ten European countries.

The trial – a shorter treatment than the previous standard – found that six per cent more patients were cancer-free after three years, with fewer toxic side-effects. Results were so conclusive that the trial finished early in 2019 and the new treatment adopted as standard across Europe.

“I was very dubious about the trial to begin with but I’m so glad my dad persuaded me to go for it,” said Francesca. “I had no sickness from the chemotherapy so it’s great to hear that the treatment is now being offered as standard. That’s why I feel so passionately about supporting research. Without improvements like this I wouldn’t be here now.

“It’s such a deadly cancer and it is so aggressive, there isn’t the biggest window of opportunity for treatment. It affects a lot of young adults and children who can lose limbs if it’s found in an arm or a leg, but treatment can be successful if it’s caught early enough.”