Skip to main content

Leukaemia trial tests Covid vaccine strategies to combat immune suppression

Patients with the most common form of leukaemia – Chronic Lymphocytic Leukaemia (CLL) – are being invited to take part in a trial that could help them build Covid-19 antibodies following vaccination, when they previously have had poor responses.

Blood cancer patients are known to be at high risk of Covid-19 and many are part of the ‘forgotten 500k’ who are not well protected by Covid-19 vaccination and are therefore still very cautious going about their daily lives in contrast to those who are not immunocompromised.

Research has found that CLL patients who take either ibrutinib or acalabrutinib over the long term are not responding to Covid vaccination as well as those who are not taking the drug. Their antibody response is usually much lower, meaning the vaccine is not as effective in protecting against the disease.

Dr Helen Parry, Associate Professor at the Institute of Immunology and Immunotherapy at the University of Birmingham, is leading the IMPROVE trial and explained: “This study aims to determine if it is possible to improve the immune response by pausing ibrutinib or acalabrutinib treatment for a short period around the time of vaccination. It will also monitor whether pausing this treatment is well tolerated by patients by looking for symptom flare.

“At present there is no advice for CLL patients regarding whether pausing their treatment is the safest approach to vaccination, but anyone who participates in the trial will help to build a vital evidence base so that appropriate advice can be given in future.”

Patients interested in participating must be able to travel to one of the six trial sites: Birmingham, Stoke on Trent, London, Dudley, Oxford or Nottingham.

Anyone interested in taking part in the trial can email the trial team or call 0808 175 1455, and further information is available on the IMPROVE trial website.

New heart attack drug trialled in Birmingham

A new partnership between BHP clinical-academic institutions and Acticor Biotech will see patients with heart attacks treated with glenzocimab, a promising new class of drug, for the first time.

The drug – which has potential to improve the long-term outcomes for heart attack patients – will be trialled in two UK acute care hospitals: the Queen Elizabeth Hospital, Birmingham and the Northern General Hospital, Sheffield.The trial will be run at the University of Birmingham with expert clinicians from the Institute of Cardiovascular Sciences and University Hospitals Birmingham NHS Foundation Trust, bringing together clinical trials expertise from two founding members of BHP.

The randomised, double-blind Phase 2b LIBERATE study will recruit more than 200 patients to test the tolerance and the efficacy of glenzocimab 1000 mg, versus placebo, to reduce heart damage following a myocardial infarction (MI), commonly known as a heart attack. Bringing together experience in running multi-site trials from the Clinical Trials Units and expertise in heart diseases, the team will see whether glenzocimab will reduce the amount of dead heart tissue in patients following an ST-segment elevation myocardial infarction (STEMI), the most serious type of heart attack.

Professor Jon Townend, Consultant Cardiologist at University Hospitals Birmingham, Honorary Professor of Cardiology in the Institute of Cardiovascular Sciences at the University of Birmingham, and Chief Investigator of the trial said: “We look forward to starting this exciting trial of a new drug for heart attacks which are still only too common.

“Although immediate opening of the blocked coronary artery by angioplasty in cases of heart attack is now routine, significant heart damage still occurs. Glenzocimab reduces clot formation and laboratory findings have been impressive.

“There are strong reasons to believe that this new drug may improve outcomes and this randomised blinded trial is the right way to test this theory.”

Dr Mark Thomas, Associate Professor of Cardiology at the University of Birmingham and Honorary Consultant Cardiologist, who designed the trial and led its development, said: “This trial will help us establish whether glenzocimab is a safe and effective drug for preventing the kind of clotting that can lead to serious damage to the heart following a heart attack.

“We’re delighted to work with Acticor Biotech to see whether this new class of drug has the potential to improve the outcomes of our patients with heart attacks. While the immediate care provided for a heart attack is effective for improving patient survival, there is more we can do to prevent long-term damage to the heart.”

Gilles Avenard, Chief Executive Officer and founder of Acticor Biotech said: Glenzocimab has already delivered very promising results in the treatment of acute ischemic stroke and we hope to confirm its therapeutics potential in another severe indication.

“We are proud of this Phase 2b study launch, which allows glenzocimab development programme extension to myocardial infarction. We would like to congratulate all the teams involved, the University of Birmingham particularly, sponsor of this study.”

Glenzocimab, a humanized monoclonal antibody (mAb) fragment directed against the platelet Glycoprotein VI (GPVI), was developed by Acticor Biotech for the treatment of cardiovascular emergencies, including stroke.

This new drug, currently being trialled for strokes, stops the functioning of platelets that cause abnormal clotting of blood. While platelet function is normally important to stop bleeding, this drug specifically targets only dangerous clotting inside damaged blood vessels called thrombosis that can cause strokes and heart attacks.

Single-stranded suture threads could prevent pregnancy infection complications, finds C-STICH trial

Women at risk of pregnancy loss who need a specialist surgical procedure are at a lower risk of infection if the procedure is carried out using a single-stranded suture thread, results from the C-STICH clinical trial found.

The trial was the largest of its type and is published in the Lancet. It involved more than 2,000 expectant mothers who needed a procedure called a cerclage, where a purse string suture is placed around the cervix (the neck of the womb) during pregnancy. Women were randomly allocated to have the surgical procedure performed using either a single-stranded thread or a braided thread.

Researchers tested whether there would be any difference in miscarriage or stillbirth, due to an increased risk of infection, from using a braided suture thread. The research, funded by the NIHR, demonstrated that single-stranded sutures could potentially improve outcomes for mothers at risk of preterm birth.

The team led by researchers from Birmingham Women’s and Children’s Hospitals (BWC) and the University of Birmingham – both founder-members of BHP – found that the mothers treated with single-stranded threads had no differences in pregnancy loss or preterm birth but reported fewer instances of infection and sepsis. This could have important implications for the health outcomes of mothers and babies who are treated with a cervical cerclage in their pregnancy.

Dr Vicky Hodgetts-Morton, NIHR Clinical Lecturer in Obstetrics at the University of Birmingham and Birmingham Women’s Hospital explained the implications of the trial results. Dr Hodgetts-Morton said:

“Preterm birth is a significant problem, complicating approximately one in ten pregnancies around the world. The consequences of preterm birth may be significant with some babies being born too early to survive, and those that survive are at increased risk of health complications. One cause for preterm birth is cervical insufficiency, occurring in 0.5% to 1% of pregnant women for which the placement of a vaginal cervical cerclage can be an effective treatment.

“Suture thread choice has the potential to improve how well a cerclage works in preventing miscarriage, stillbirth and preterm birth. Both single stranded and braided threads are commonly used to perform cerclages and our findings show no differences in pregnancy loss and preterm birth. The C-STICH trial results did show an increased risk of infections in labour and around the time of delivery with braided threads and this supported our hypothesis that a single stranded thread could reduce the risk of infection developing during the pregnancy.”

Mr Philip Toozs-Hobson, Chief Investigator of the C-STICH project and Consultant Gynaecologist at the Birmingham Women’s Hospital said:

“We are extremely grateful to all the women who trusted us by taking part in the study and also the dedication of the research teams at of the 72 maternity units who made the trial happen. Our aim, as ever, is to improve women’s experience in pregnancy through safer childbirth and to help the NHS achieve their target of reducing both pre-term birth and cerebral palsy. This work has added to our understanding relating to infection and sepsis.”

The study also highlighted that while single stranded suture threads led to better outcomes around infection, clinicians mentioned that such suture threads were subjectively more difficult to remove and more often required surgery to help remove under a general anaesthetic.

Birmingham BRC receives £30m boost to improve treatment of inflammatory diseases

Increased funding for the renewed NIHR Birmingham Biomedical Research Centre will enable continuation of major developments around inflammatory diseases and new technologies and systems

The NIHR Birmingham Biomedical Research Centre (BRC) has been awarded more than £30 million in funding from the National Institute for Health and Care Research, a major funder of global health research and training, to support world-leading research into inflammation – including the development of new diagnostic tools and treatments for those with cancer, liver and heart disease, and many more illnesses.

The centre brings together multiple BHP members – including leading NHS providers led by the University Hospitals Birmingham NHS Foundation Trust and academic institutions led by the University of Birmingham – as well as other organisations working closely with charities and businesses. Its aim is to support research into inflammation which causes or worsens many common long-term illnesses including arthritis, liver disease and cancer.

This new investment represents an almost threefold increase in funding for the NIHR Birmingham BRC and will enable researchers to focus on eight areas of illness including heart disease, women’s health, and common complications from inflammation. Researchers will also be empowered to consider new tests and biomarkers for disease, health technologies including stem cells and gene therapy, patient experiences and data science.

Professor Phil Newsome, Director of the NIHR Birmingham BRC, said: “Inflammation plays a central role in many health conditions, with millions of people in the UK alone experiencing inflammatory diseases such as arthritis and bronchitis. This significant increase in funding will enable us to provide an outstanding environment for world-leading clinical research and allow us to make a step-change in our work tackling different forms of cancer, trialling new drugs for liver disease, and dealing with antimicrobial resistance.”

Patients will benefit from the increased funding thanks to the BRC’s collaborative research that has seen nearly 1,000 clinical trials and informed UK clinical guidelines.

Researchers will look at eight themes to continue to understand and help patients manage inflammation-based diseases including cancer, arthritis, and liver disease. The investment of the NIHR funding in biomedical research will enable clinicians, researchers, patients and supporters to find new treatments such as the development of new immunotherapies, which are types of cancer treatments to support the body to fight cancer.

Professor David Adams, Director of BHP, commented: “The investment from NIHR is hugely important for researchers working across the BRC partner institutions, to continue to tackle some of the critical health themes that affect our region. The funding will allow us to deliver new therapies and diagnostic tests for a range of chronic inflammatory diseases for which we currently have few effective treatments.”

Professor Lucy Chappell, Chief Executive of the NIHR, said: “Research by NIHR Biomedical Research Centres has led to a number of ground-breaking new treatments, such as new gene therapies for haemophilia and motor neurone disease, the world-first treatment for Creutzfeldt–Jakob disease, a nose-drop vaccine for whooping cough, and the first UK-wide study into the long-term impact of COVID-19.

“This latest round of funding recognises the strength of expertise underpinning health and care research across the country and gives our nation’s best researchers more opportunities to develop innovative new treatments for patients.”

The Birmingham Biomedical Research Centre is made up of the following BHP member organisations:

  • University Hospitals Birmingham NHS Foundation Trust
  • University of Birmingham
  • Sandwell and West Birmingham NHS Trust
  • Birmingham Women’s and Children’s NHS Foundation Trust
  • Aston University

Working closely with partners:

  • Birmingham Community Healthcare NHS Foundation Trust
  • Keele University
  • University of Oxford

Urine test for bladder cancer could replace thousands of invasive procedures each year

Birmingham researchers funded by Cancer Research UK and liquid biopsy company Nonacus have developed a new urine test for bladder cancer, which could reduce the need for invasive and time-consuming procedures to diagnose the disease.

The test will use highly sensitive liquid biopsy technology developed by Nonacus in conjunction with  a panel of biomarkers developed and validated by Mr Rik Bryan and Dr Douglas Ward from the Bladder Cancer Research Centre at BHP founder-member the University of Birmingham, to detect the presence of bladder cancer by finding DNA from tumour cells present in the urine.

The biomarker panel, which consists of 443 genetic mutations that are common in bladder cancer has been validated in a deep sequencing study recently published in European Urology Oncology.

In this study, which was funded by Cancer Research UK and the Medical Research Council, the researchers used the test to analyse urine from 165 people with bladder cancer that had experienced haematuria (blood in the urine), and successfully detected the disease in 144 of them (87%).

The researchers also looked at using the test in 293 patients who had already been treated for bladder cancer and were being monitored for the cancer returning. In this setting, the test returned a higher proportion of false positive results compared to when used in the haematuria clinic (37.5% vs 15.2%), with 99 positive urine tests without a tumour being seen by cystoscopy on the same day. However, during their follow up monitoring, the patients who had those positive results had almost 3-times higher (11% vs 4%) rates of the cancer returning within 24 months indicating that the test could help detect recurrent disease before it is visible by cystoscopy (the camera inspection of the bladder). Further research is needed for the test to be used for surveillance.

Lead researcher Mr Richard Bryan said: “Even though cystoscopy is good at detecting bladder cancer, it’s invasive and time consuming for patients, so we need a better way to diagnose patients. In the future our test could be an easier way to get people with bladder cancer diagnosed faster, and could mean that tens of thousands of cystoscopies on healthy patients can be avoided each year.”

Iain Foulkes, Executive Director of Research and Innovation at Cancer Research UK said “These findings show that this urine test could help diagnose bladder cancer more easily. Early detection of cancer is key for improving patient outcomes and research like this could help identify the patients that need treatment soonest, while easing the pressures of diagnostic procedures on the NHS. We look forward to seeing how the test performs in the next clinical trial.”

The researchers are working in partnership with Nonacus, a provider of genetic testing products for precision medicine and liquid biopsy, to turn their approach into a clinical test for patients to be used within the NHS, and will start a clinical study funded by Cancer Research UK and involving over 3000 patients to evaluate just how powerful the test is at reducing the number of cystoscopies.

Each year, over 300,000 cystoscopies are carried out in England, however, around 80% of patients with haematuria who’ve had cystoscopy are found to have no cancers or abnormalities1,2.  The researchers believe that using the urine test in haematuria clinic could reduce the number of patients requiring a cystoscopy by at least 45%.

Civilians and military take part in study to improve concussion prognosis

A major UK study to identify new ways to accurately predict if patients will develop long-term complications as a consequence of concussion has been launched, led by experts at BHP founder-member the University of Birmingham and the Defence Medical Rehabilitation Centre, in collaboration with the Defence Medical Services.

With year one funded by the Ministry of Defence (£2m) and projected to run over eight years, the multi-faceted study will include a trial involving 400 civilians and 400 military personnel aged over 18 with a new diagnosis of concussion (also known as a mild traumatic brain injury or mTBI) which has resulted in them needing hospital treatment or rehabilitation.

At specific time intervals over two years, the participants will take part in nine different areas of research using a variety of medical techniques and assessments to establish if these can be used routinely by medics as ‘biomarkers’ to indicate prognosis and long term impact of concussion. Medical techniques and assessments being trialled include brain imaging and function, analysis of blood and saliva samples, and headache measures, as well as mental health, vision, balance, and cognitive performance.

mTBI is common and has been declared a major global public health problem, with 1.4 million hospital visits due to head injury annually in England and Wales – 85% of which are classified as mTBI. It is also estimated that up to 9.5% of UK military personnel with a combat role are diagnosed with mTBI annually.

The research will involve 20 University of Birmingham experts working across disciplines, including neurology, psychology, sports medicine, mathematics and academics within the University’s Centre for Human Brain Health, and will be coordinated by Birmingham Clinical Trials Unit. It will also be driven by experts at the Defence Medical Rehabilitation Centre Stanford Hall; Aston University, Imperial College London; University of Westminster; University of Nottingham; Royal Centre for Defence Medicine; and University Hospitals Coventry & Warwickshire.

Alex Sinclair, Professor of Neurology at the University of Birmingham and Chief Investigator of the project, called mTBI-Predict, explained: “Although classified as mild, and many recover, the consequences of concussion can be profound with many patients suffering long-term disability due to persistent headaches, fatigue, imbalance, memory disturbance, and poor mental health including post-traumatic stress disorder, while it can have a significant impact on the economy through loss of working hours and demand on the health system.

“Identifying those patients most at risk of these disabling consequences is not currently possible. There is therefore a pressing need to develop accurate, reproducible biomarkers of mTBI that are practical for use in a clinical setting and can predict long-term complications. Our programme of research will deliver a step change in the care of patients with mTBI, enabling a personalised medicine approach to target early intervention for those most in need but also identifying those with a good prognosis who can return rapidly to activities of daily living.”

Co-Chief Investigator, Air Vice-Marshall Rich Withnall QHS Director of Defence Healthcare, UK Ministry of Defence said: “I am delighted that the Defence Medical Services, including the Defence Medical Rehabilitation Centre at Stanford Hall, will be working hand-in-glove with class-leading civilian colleagues and the National Rehabilitation Centre Programme. I fully support this ground-breaking research which I am confident will lead to significant clinical innovation to benefit military and civilian patients, and have translational positive impact for sporting activities from grass-roots to elite levels.”

Peter McCabe, Chief Executive of Headway – the brain injury association, said: “We know that even a seemingly minor head injury can have a major impact on a person’s life – and often the lives of those closest to them. This is particularly the case if the brain injury goes undiagnosed or its effects are mistaken for other conditions. The frustration of not having an accurate diagnosis or receiving the right support can be compounded by the lack of a clear recovery pathway or timeline. We therefore welcome this study in the hope that it can advance our understanding of concussion and mTBI.”