New research collaboration will develop precision cell therapies for blood disorders
The Universities of Birmingham and Oxford are to take part in one of five NHS Blood and Transplant (NHSBT) research units launched today.
The £20m programme, co-funded by the National Institute for Health and Care Research (NIHR) and NHSBT – is aimed at providing new technologies, techniques or insights that will benefit donation, transfusion, and transplantation. The NIHR BTRUs are partnerships between universities and NHSBT.
Many of the work strands in the new units could result in new technologies and practices that can then be delivered at scale by NHSBT, helping to save and improve even more lives. Much of the work will be aimed at reducing health disparities and improving access to new treatments.
Researchers at the Universities of Birmingham (UoB) and Oxford are part of the NIHR BTRU in Precision Cellular Therapeutics – also working in collaboration with University Hospitals Birmingham (UHB) NHS Foundation Trust. UoB and UHB are both founding members of BHP, with a long history of collaborative research and development.
The aim is to develop new kinds of cell therapies for blood disorders and blood cancer, and improved systems for following up patients receiving treatment to better support their care.
There is a wide range of work in the package but examples include:
-
- Transplants work in blood cancer patients because some of the donor immune cells attack and eliminate the cancer, but these cells can also attack the donors own cells and cause a complication called graft versus host disease (GvHD). The team will seek to identify and clone the receptors that enable the T cells to target the cancer cells while reducing the toxicity due to GvHD seen in patients. The ultimate aim of this research is develop a novel clinical trial, with NHSBT, via its cell therapy manufacturing infrastructure, expanding these cancer specific T cell receptors for use in patients.
- There is a shortage of suitable cell donors for minority communities. Cord blood units from babies may be a match but not have enough cells to be successful in adults. The team will seek to expand and gene edit the stem cells in cord blood, so they could be used with increased safely in a wider range of adults. NHSBT will support the translation of this research through to early phase clinical trials, providing process development, manufacturing and quality control expertise. This initiative will drive wider access to cord blood transplant.
- It is important that patients from all communities benefit from cell therapies. The team will seek to better understand how patients access the newer cell therapies and how they perceive the benefits of treatment. The team will develop new digital technologies that improve care by enhancing interactions between the patients and their doctors and nurses.
The BRTUs are funded by £16m from the NIHR and £4m from NHSBT, with research goals set to meet NHSBT’s requirements, to be delivered between 2022 and 2027.
The products could be manufactured at the latest NHSBT sites including major new centres such as the new cellular therapies laboratories in Barnsley and the forthcoming Clinical Biotechnology Centre in Bristol.
Dr Gail Miflin, Chief Medical Officer for NHSBT, said: “By collaborating with academia, these five new Blood and Transplant Research Units will help us to deliver on our mission to ‘save and improve even more lives’ and drive innovation to inform future clinical practice and improve patient outcomes.
“For example, the supply-demand gap for solid organs continues to grow. We will explore the use of organ perfusion technologies to maintain and enhance the quality of organs, improve organ preservation and increase organ utilisation. This will enable more patients to receive the transplant they need.
“And by building and analysing new data sets to track and demonstrate the impact of our interventions will lead to better understanding and improved outcomes. We already do this well for solid organs, but do not currently understand the outcomes for people who receive blood or stem cells. We will work with partners to build integrated data sets for these patients, focusing on the multi-transfused, especially those with sickle cell disease where a clear health inequity exists.
“To maximise the value and impact from our research, we will accelerate the translation of innovation into practice. The NIHR BTRUs will be an important vehicle for this in the longer term.”